NASA Announces Two Missions to Venus

BlogNews

NASA has announced to future missions that will hopefully shed more light on the mystery planet that is Venus. Venus has characteristics almost identical to Earth. However, currently, scientists know so little about the planet itself. When comparing Venus to Earth, both worlds have complex weather systems, size, atmospheric composition, and density. Both planets are near the sun, with Venus being thirty percent closer to it than Earth. Scientist also refer to Venus as Earth’s sister planet because of its volcanic activity, plateaus, and water availability. In order to help with lack of knowledge about the fiery planet, NASA has planned two missions codenamed DAVINCI+ and VERITAS to study the planet further. The mission’s primary goal is to design a detailed 3-D model of Venus to better understand the planet’s environmental makeup, features, activity atmosphere, and more.

With the excitement building of new exploration and understanding also comes new groundbreaking technology to aid discovery. Mission VERITAS will use technologies like an atomic clock in deep space with great precision that will allow spacecraft to traverse and approach the planet. Once this 3-D model of Venus is created, scientists believe that things like real-time evaluations of the planet will presumably be achievable. With $500 million given for the missions, NASA plans a launch date anywhere between 2028 and 2030. While this undertaking will undoubtedly be an immense challenge, the information that NASA could unlock with these missions could rewrite our understanding of Venus.

If you would like to read more about NASA’s missions, please click here. If you would like to read more collaborative projects between Lenox Laser and NASA, please read more here.

NASA and Aerosol Jet Printing

Blog

Through the years, there have been many different styles of printing, from newspapers on paper presses to photo printing and art design. With these techniques, the amount of ease using them continues to evolve. Aerosol jet printing is a method that allows contactless direct printing for mass manufacturing that uses inkjet technology to put materials on substrates. It is the process of coding a base material used as a foundation for the object or image being printed on material. This process would also aim to significantly reduce printing time and manufacturing costs for companies. Aerosol jet printing can allow fine detail printing of 10 µm for high resolution printing onto different types of hardware and electronics.

The technique is also being used recently by NASA with a combination of 3-D printing that can print electronics such as transistors, conductors, and even cell phone cases. NASA is using it to create motherboards with digital to analog converter chips. If successful, NASA could later use it to mass-produce and print hardware for their many spacecraft.

Non-particle ink such as silver ink would allow extraction of silver non-particles from 10 to 100 µm of extraction. The type of non-particle can also be determined by the metal material used, such as titanium, aluminum, alloy, steel, and more. The difference between inkjet printing and aerosol printing is that aerosol allows 2 to 4 times higher resolution than inkjet, print resolution, and ink viscosity. Aerosol also has a clone-resistant nozzle; inkjet does not; aerosol is more tightly focused on its direction when printing, whereas inkjet is random directionality. Inkjet is a single drop; aerosol can be continuous.

Lenox Laser was able to use our cutting-edge processes in laser drilling flow restrictive orifices to assist in these technological advancements in the field. The full potential of aerosol printing has yet to be realized. However, we at Lenox Laser very helpful for the future and happy to be a part of it.

If you would like to read more about this piece of news, click here for an article from 3DPrintingIndustry and here for an article from ResearchGate.

The Moxie Box – NASA’s Oxygen Box

Blog
Courtesy of NASA

               About a month and a half ago, NASA’s Perseverance rover made landfall on Mars, bringing audio and video skimming across the planet’s surface. NASA sent the rover to Mars on a mission that ended in February this year to search for signs of life on the planet by collecting many different rock samples and broken rock and soil mixture called regolith. Mars is not the safest environment for human exploration. Its harsh atmosphere is a mix of molecular oxygen, carbon monoxide and dioxide argon, and molecular nitrogen.

Carrying several thousand pounds of oxygen for any mission on a rocket can be challenging. NASA created a box codenamed Moxie to take on the challenge. The Moxie box is almost no larger than a car battery. However, it allows explorers to explore the planet’s surface for longer because Moxie would convert Mars’s environment into breathable air for the astronauts. The Moxie box ways in total about 33 pounds and cost about $50 million to make.

               The Moxie box works by siphoning carbon dioxide; then, theoretically, it would split molecules electrochemically into oxygen and carbon monoxide. The Moxie box would mix in a tremendous amount of oxygen with the carbon monoxide. Scientists have plans of making more extensive versions of the Moxie box. At its current size, it should be able to produce about 10 grams of oxygen per hour. The box consumes 300 Watts of power.

               Once perfected, this box would be a game-changer for astronauts and planetary exploration. With the successful use of the box on board the Perseverance rover in February 2021, it is hoped that larger-scale devices can be launched possibly sometime in 2030 and beyond.

If you would like to read more, click here for an article by Popular Mechanics.

NASA and SpaceX International Space Station Agreement

BlogEvents

The International Space Station (ISS) has a storied history. It took over 30 missions and thousands of person-hours to complete. It was clear that The National Aeronautics and Space Administration (NASA) would need a space station to study the vastness of space in minute detail in the space age. The ISS began its construction in 1998 when the first segment launching in a Russian proton rocket on November 20 of that year. NASA engineers completed the massive station’s main parts in 2011, and the station has been occupied by astronauts and scientists since 2000. The ISS now enters its Golden age with a new agreement between SpaceX and NASA. 

The agreement allows SpaceX and NASA to work on any project together for the space station. The Starlink program by SpaceX, which is now the largest existing on the orbiting spacecraft group, is also part of the agreement. SpaceX recently launched 60 additional satellites for their internet network on March 24. This agreement is important as it allows both parties to work smoothly and in unison.

NASA’s taxi ride program, which is still in development with SpaceX, will allow quick and easy transport to and from the ISS on shorter missions. If all goes to plan, this taxi ride program could launch sometime in 2022 with NASA’s approval. Should the taxi ride program be successful, companies would plan additional missions, up to two per year, lasting a month each. Boeing is also interested in partnering on this venture.

This agreement is a huge step forward in the history of space exploration. It will be exciting to see what can be achieved in the future of the ISS. It will also help strengthen and speed up communication between the two parties. SpaceX is an upcoming launch on April 22 for the Falcon 9 Crew 2 mission. We at Lenox Laser wish them all the best.

If you wish to read more, click here for an article by TechCrunch and here for an article by phys.org.

Update on The NASA Messenger

BlogNews
Courtesy of NASA

The NASA Messenger satellite was the seventh discovery mission ever launched by the company and the first-ever fly past Mercury. Its intended purpose was to study the geological environment of the planet as well as its surface. Several days ago, the systems on board the Messenger recorded a meteoroid striking Mercury’s surface. It’s estimated that it measured three feet in length. The Messenger expedition lasted from 2011 to 2015. The Messengers Fast Imaging Plasma Spectrometer helped capture the possible evidence readings and amounts of sodium and silicon ions within planets solar winds. The meteoroid would come from an asteroid belt some 200 million miles away from Mercury using the information from those particles.

Scientists could do a reverse time-lapse using the particles found in the solar winds and determined that the particles found were younger than initially thought. On the sun side of the planet, it was discovered that the particles were traveling in an extremely tight beam of light like a wave, all at the exact same time and speed. This allowed them to track the sun particles back to their source and found that a cluster of particles erupted on Mercury and scattered nearly 300 miles into the vastness of space. Powerfully charged gases also disperse from rays of light from the solar winds. Hypothetically maybe two or three impacts happened per year during Messenger’s mission lifespan. Unfortunately, none of those were captured in any of the images from the mission.

Messengers’ origins date back all the way from July 1999, when it was first selected as the seventh discovery satellite, to July 2001, when final construction began. August 2004 is when the mission launched. It completed flybys of Earth, Venus, and Mercury starting in August 2005 and ending with the Mercury flyby in September 2009. The satellite completed its mission in 2015. 

Space is a vastly endless sandbox of discovery for modern science. To all those working to discover greatness in space and beyond, Lenox Laser gives our thanks. To see a detailed timeline of the Messenger mission, please click here.

NASA Kepler Mission: Update

NewsUncategorized

The NASA Kepler mission is currently in its second phase of operation since the recovery of the craft and launch of K2. A couple of years ago Kepler lost some important technology and had to return to Earth, but now with K2 being launched, the campaigns can continue.
The mission still retains its original goal of discovering earth-like planets and determining if any are habitable.
Lenox Laser was responsible for fabricating what the scientists over at NASA call the Starfield Plate. This plate consists of stainless steel laser drilled with an array of holes as small as 3 microns in diameter with the purpose of performing photometry.

[easy-image-collage id=15179]

NASA Stereo Mission: Update

NewsUncategorized

The STEREO probes continue to orbit the earth and obtain data despite completing its mission two years into the mission.October 1st, 2014, communications were disrupted between NASA and the Behind craft after a planned reset of the spacecraft’s systems. Ongoing attempts to resume communications with the Behind STEREO are happening. The two probes still monitor solar and heliospheric activity currently.

Lenox Laser fabricated custom parts and provided consulting services in support of testing the focus setting of one of the STEREO instruments during satellite integration at NASA/Goddard Space Flight Center. Without the assistance of the company the project nearly ended, for our help NASA awarded our team the NASA/Goddard Space Flight Center Instrument Systems and Technology Division 2006 Contractor Team Spirit Award.

[easy-image-collage id=15172]

NASA Messenger Mission: Update

NewsUncategorized

The Messenger mission came to an official end the previous year in 2015 with a planned impact with Mercury’s surface

The spacecraft began orbiting Mercury on March 17, 2011 and orbited a total of 4,105 times.The craft was successfully able to receive all the data it was sent to collect and more, wildly exceeding its expectations, recording information on magnetic anomalies, ice filled craters, and other previously undiscovered features of the planet. Lenox Laser was responsible for fabricating the High Power Ceramic Apertures used for spatial filtering aboard the NASA Messenger space craft. The filters were used to enhance the power of Messenger’s optics.

[easy-image-collage id=15167]

NASA STEREO Mission: Update

News

In 2006 Lenox Laser helped the NASA STEREO Mission get back on its feet by assisting on a critical test in which we precision drilled many optical apertures for the mission. STEREO is a solar observation mission that launched in 2006. It consists of two mostly identical spacecrafts which orbit the Sun. This has allowed them to preform steroscopic imaging of the Sun and other solar phenomena. You can see the the glorious results of the NASA STEREO Mission that Lenox Laser was essential in rescuing.

2nd International Light Seminar- Dr John C Mather

Blog

Dr. John C. Mather in his office at Goddard Space Flight Center Credit: NASA
Dr. John C. Mather in his office at Goddard Space Flight Center
Credit: NASA

Dr John C Mather is our guest and speaker of honor at our 2nd International Light Seminar here at Lenox Laser. For a more complete biography and list of accomplishments, you can see John Mather’s NASA profile.

We are very happy to have him and continue to have Nobel Prize winners speak at our seminars. His chosen topic is: “The Universe in a Nutshell.” I don’t think he’ll have to worry about finishing early with that topic!

Dr. John C. Mather at the Nobel Award ceremony, standing with his award. Copyright @ The Nobel Foundation 2006 Photo: Hans Mehlin
Dr. John C. Mather at the Nobel Award ceremony, standing with his award.
Copyright @ The Nobel Foundation 2006
Photo: Hans Mehlin

1 2 3