Microscopes reveal many things in the world of science, such as organisms and cells, giving us an up close and personal look at tiny lifeforms. Using new techniques, the accuracy of microscopes could be enhanced to view the cell makeup of a sneeze by studying the volume of micro droplets. This is done by methodically tinkering with the calibration of optical microscopes. Most importantly this new venture could give insight into how airborne viruses evolve and spread so rapidly. The National Institute of Standards and Technology (NIST) is spearheading the research, with measurements of volume being tested on samples that are 1e-11mL, around the volume of a red blood cell. With these optical microscopes, scientists can see the various dimensions and positions of droplets, within a potential tolerance of less than 1%. The method utilized to accomplish this is known as gravimetry which relates to the measurement of weight, giving them the ability to weigh droplets and see how much could fit into specially designed containers. Some of the test tools used were calibrated plastic spears to simulate the boundaries of an image once captured.
It was found that whenever the droplets landed on the surface the liquid evaporation trail could be used for study. It is not yet known how these images will be captured and what resolutions they will be. Focus and distortion were a couple of variables that were calibrated in the microscopes to improve the captured results. While this breakthrough is still in the initial stages, it is hoped that once perfected, we can have a more complete picture of diverse types of viruses, how they function, and how we can stop them in their tracks. This is an especially huge breakthrough that could end up being a great defense against coronaviruses. We wish everyone involved the best of luck on this ongoing research.
Click here, to read previous blog entries covering recent innovations.