A new study researching one of the moon’s biggest mysteries may have been solved; how did the moon form a temporary magnetic field? A team of experts at Stanford and Brown Universities are now seeking answers with rock samples taken from the surface and their formations. According to early evidence, it was theorized that the field came from the liquid mantle of the moon during its first billion years of existence, when several rocks sank into it. The magnetic fields would be strong, but sporadic. It is unable to exist now because the moon’s frigid temperatures. To help find further proof of this theory, rocks from all the past Apollo missions from 1968 to 1972 were studied thoroughly. The rocks had signs of the magnetic field, but it does not explain how it could exist when it’s not even as strong as Earth’s.
Another theory the researchers have is planets and planetary bodies that surround the moon could have given these magnetic fields, however temporary, energy. The slow dispersal of heat from this activity could have given the moon’s then molten core enough heat and energy to help aid in the production of temporary magnetic fields. Minerals like anorthosite floated to the moon’s crust surface, along with titanium from the molten core. A process known as gravitational overturn would happen causing the rocks to sink into the moon’s mantle. Using these findings new models within created giving the team simulations of what happened. Scientists found that all cooling layers of magma led to a convection process that laid the foundation for the magnetic field.
For further reading on this discovery, click here, and here.
Click here, to read other Lenox Laser posts covering recent aerospace developments.