Phase-III Trial of Oxford COVID-19 Vaccine

As we move closer to a publicly available vaccine, it is essential to focus on the remarkable strides that have occurred and the teams behind those efforts.  Currently, 40 vaccines are in the works against Covid-19, with nine of them in phase 3 clinical trials. Oxford University’s vaccine partnering with drug maker AstraZeneca continues to show increasing promise in this ongoing battle.

The Oxford vaccine has recently shown very positive immune responses with minimal side effects in a study done by the University of 1077 adults between the ages of 18 and 55, with about 70% developing the side effects of a low-grade headache or fever. AstraZeneca’s CEO is currently predicting the vaccine will be ready by the end of 2020 or early 2021 despite a setback that involved a person in the UK contracting an unknown illness on September 11 from the vaccine. The company was given permission to resume testing on September 15. The patient is now on the mend and doing well. Another faith retest of the vaccine is set to begin the week of September 28 in Pune, India, where around 150 to 200 volunteers will be given the test vaccine at the Sassoon General Hospital.

As for a vaccine timeline, it started for Oxford earlier this summer and has continued to gain momentum ever since. Many companies in phase 3 trials are confident that they would have a vaccine no later than 2021. We at Lenox Laser wish the candidates all the very best and give our sincere thanks to all doctors and medical professionals during this pandemic. If you wish to read more, you can click here.

James Webb Space Telescope Solar Array Update

The James Webb space telescope — a marvel of engineering since its inception —is now set to launch on October 31, 2021. Up until now, it has gone through the successful test of its computer equipment to the deployment of its gigantic reflecting mirrors. Now, its solar arrays have been reconnected to the telescope. Five solar arrays can be folded up to fit onto James Webb’s launch vehicle — the Ariane 5 rocket. The arrays measure roughly 20 feet long. To test the arrays successfully while avoiding friction, they conducted the tests on the arrays by putting them on their side in the spring of 2019. The arrays’ purpose and the telescope itself are to go deeper into the universe and hopefully study it in more detail than ever before possible.

The mirrors onboard James Webb will allow it to capture clearer images of the universe. Its instruments will also help give readings to help provide a better map of the universe. With its improved accuracy and depth, the telescope will provide scientists and mankind a better understanding of space. Its first mission will be to study the light of space using infrared technology. The study of light could also help give us an understanding of gases in space.

The telescope will tell us about galaxies and planets that we’ve not yet discovered with the full potential telescope set on studying light. If you would like to read more about this update on the James Webb space telescope, click here.

SpaceX and Their “Mighty Mice”

               With the incredible success of the most recent SpaceX launches this past summer, they have completed another study. This time, it involves an experiment to inject genetically engineered mice with drugs to prevent muscle mass loss when in space for a prolonged period. This experiment aimed to find better treatments to help avoid muscle loss, loss of bone density, and muscle fatigue for astronauts while in space.

               In Connecticut, a research lab sent 40 young female mice up in the space in December aboard a SpaceX rocket. However, eight of these mice were genetically engineered — dubbed “mighty mice,” and were also given certain protein-blocking drugs. Upon return, it was discovered that 24 of the control mice lost roughly 18% of their muscle mass while in zero gravity. However, the eight “mighty mice” sent up to space were comparable to the “mighty mice” that stayed on Earth. It was also found that some eight normal mice were given the “might mouse” treatment and had recovered their lost muscle faster than the others.

As far as results, all scientists were able to say this time was that specific molecules and signaling pathways were worth exploring in the mice. Scientists also state that while human testing and the use of these drugs for future astronauts would be a fantastic thing, experimentation is nowhere near ready for human trials.

               In the end, this experiment gave scientists a massive amount of hope for continuing to improve upon the safety measures and overall health of space astronauts of the present and future. We cannot wait to see the result of this groundbreaking study. If you would like the read more, click here.

SpaceX SAOCOM 1B and Starlink Satellites Launch

SpaceX made strides yet again this past weekend with its 100th rocket space flight when they launched their remote sensor satellite from the Falcon 9 rocket. The $600 million orbital launch on Sunday, August 31st, was successfully launched in Florida; this is the first launch of its kind from Florida in several decades. The purpose of this SAOCOM 1B satellite is to study what could be impacting the agricultural sector as an educated hypothesis. The satellite will take readings of the Earth’s rotation, soil and dust samples, and the Earth’s orbit from the sun. 

Starlink Satellites Stacked together before their deployment.
Starlink Satellites Stacked together before their deployment.

The agricultural moisture mapping will monitor the soil 1 meter below the surface level. The satellite will work in tandem with another Italian satellite designed to the same task launched in 2018. With this study, it is hoped that things like soil quality density and makeup can be better measured to continue to help the environment is much as possible. 

However, during that same day, a launch was delayed due to weather: The SpaceX Starlink program. The program is intended to give the world massive satellite Internet and Wi-Fi capabilities in the future. SpaceX later tweeted that the next opportunity to launch the Starlink satellite was on Thursday, September 3rd, in the morning. UPDATE: The Starlink satellite launched at 8:46 am EDT from Launch Complex 39A.

We at Lenox Laser want to wish all of those involved with this mission in future missions for SpaceX the better the very best wishes for success and prosperity, and may their findings help enrich space discovery for years to come. To learn more about this mission or any other mission, please visit  

NASA’s Webb to Study Quasars

Courtesy of NASA

The James Webb Telescope will be taking on a new challenge on its journey to study quasar galaxies. A quasar is an extremely luminous galactic nucleus with a massive black hole millions to billions times larger than the Sun. This study’s purpose is to examine the light within the quasar and its host galaxy. Researchers at Heidelberg University in Germany plan to use 3-D techniques to measure the quasar and host galaxies’ data. 

About 20 years ago, scientists hypothesized that quasars were responsible for a galaxy’s limited growth because they are also accompanied by massive black holes. The 3-D technology will be used for this endeavor will allow scientists to use different wavelengths to measure gas readings and dust, which can be mapped. Also, they wish to study the nonsymmetric winds using imaging spectroscopy. Interestingly, the quasar’s gas flow is flowing out and not around the galaxy center of gravity ring. Scientists hope to discover more about what exactly makes up the contents of the quasar’s core. The James Webb Telescope can break down light into its primary colors, red, green, and blue — in the same way as a television screen. Scientists can break it down even further into smaller variants of colors.  

It is hoped that the techniques used in this study can be used in the future of James Webb’s missions. The launch of James Webb is currently set for 2021, and it is expected to be the premier space science observatory to the world. This test will be a hopeful leap forward in better understanding the mysteries of space. If you would like to read more, click here

1 2 3 4 5 6 7 28